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Neutral Natural Models

The Standard Model of Particle Physics

Standard Model of Elementary Particles
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Unanswered questions

o Dark Matter

@ Cosmological constant

Gravity
Neutrino masses
Hierarchy problem of masses

Hierarchy problem of scales
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Neutral Natural Models

The Hierarchy Problem

@ my =125GeV — A ~0.13

@ my is not protected by a
symmetry

o Radiative corrections to
Higgs boson mass are
quadratic on Agp

@ Fine Tuning

@ New physics
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SUSY and Hierarchy Problem



Selected CMS SUSY Results* - SMS Interpretation ICHEP "16 - Moriond "17
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Neutral Natural Models

@ SUSY scale cannot be too big

@ Radiative corrections to my depends on the stop mass
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Neutral Natural Models

Neutral Natural models

Colorless Top Partners;
@ Extensions to the Color Group: [SU(3)]%.

Twin Higgs (Chacko, Goh Harnik hep-ph/0506256);
Quirky Little Higgs (Cai, Cheng, Terning arXiv:0812.0843);
Folded SUSY (Burdman, Chacko, Goh, Harnik, hep-ph/069152).
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Folded SUSY

Folded SUSY (Burdman, Chacko, Goh, Harnik, 2006)

Q@
3
%)
@ Extension of Color Group &
o 5U(3)C X SU(3)hidden E Planck
o UV completed with SUSY
model
o SUSY broken by the Scherk Supersymmetry
Schwarz mechanism Few TeV
Standard Model + Folded SUSY

Electroweak
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Folded SUSY

Toy Model: Bifold Protection

@ Global U(N) with a singlet S

W=XSQiQ:, i=12,...N
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Folded SUSY

Toy Model: Bifold Protection

@ Global U(N) with a singlet S

W=XSQiQ:, i=12,...N

Ms quadratically divergent
@ Supersymmetrize
@ Double the number of quarks, U(2N)
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@ Invariant under 4R

|boson) — |boson),

|fermion) — —|fermion)

@ and Zor
1 ;
+1 S$—S
M= ,
-1 Q ——TQ;
- Q— -T"Q




Folded SUSY

Accidental SUSY
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Folded SUSY

Orbifolding — Project out odd states under Zog X Zor
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Folded SUSY

i=1...N,
j=N+1...2N

@ Singlet is protected at 1 loop
@ At 2 loop Singlet is quadratically divergent
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Folded SUSY

i=1...N,

Jj=N+1...2N
@ Singlet is protected at 1 loop
@ At 2 loop Singlet is quadratically divergent
@ Squarks masses are not protected!
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Folded SUSY

Folded SUSY

e Extended Color Group SU(3)¢ x SU(3)hidden X Z2
@ Accidental SUSY (quarks and colorless f-squarks)

@ my protected against radiative corrections

Ly = (Athuqaua + h.c.) + X2|dghy|> + N2|lighy|?.

16
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Folded SUSY

The Scherk Schwarz Mechanism

@ UV completion

@ SUSY in 5D with one CED

@ Broken by boundary
conditions

@ 4D daughter theory with
Accidental SUSY



Folded SUSY

The Scherk Schwarz Mechanism

@ UV completion

@ SUSY in 5D with one CED 1
St/Z,
@ Broken by boundary 0 % | R
conditions T

@ 4D daughter theory with
Accidental SUSY

Figure: Orbifolding mechanism



Folded SUSY

SU(6) x SU(2) — SU(3)a x SU(3)s x SU(2) x U(1)

A A

QiA(371727 1/6) QiB(173727 1/6)
Uia(3,1,1,—2/3) Uia(1,3,1,—2/3)
Dia(3,1,1,1/3) Dis(1,3,1,1/3)
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Folded SUSY

Yukawa Interactions

W = 6(y)Ae[QsaHyUsa + @ Hy Usg],
After SUSY Breaking

Ly = (Athugaua + h.c.) + N2[dghu|® + N2|iighy|?.
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F-Squark masses at 1 loop
(A. Delgado, A. Pomarol, M Quiros, hep-ph/9812489)
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Distribution of displaced vertices at the LHC

F-squarks production at the LHC
(Burdman, Chacko, Goh, Harnik, Krenke, 0805.4667)

@ Charged Currents
o W+ resonance
@ Neutral Currents
e Colorless glueball — Displaced vertices
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Distribution of displaced vertices at the LHC

W~ bounds on LHC Run |
(Burdman, Chacko, Harnik, Lima, 2014)
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Distribution of displaced vertices at the LHC

Signals (Burdman, Lichtenstein, In Preparation)

@ Decay of f-squarks into Glueballs is prompt

@ Decay of Glueballs into SM through Higgs
(Craig, Katz, Strassler, Sundrum 1501.05310)




Distribution of displaced vertices at the LHC
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Distribution of displaced vertices at the LHC

Folded Strong Coupling

@

(9]

O

(0]

>

oo SUSY

2

L
N
qr

MG ~ TNR
(Georgi, Nakay, arxiv:1606.05865)

_ 3 1 _Ns
UF = 8 (” 6)

N
a
w
~



Distribution of displaced vertices at the LHC

Production of f-squarks
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Distribution of displaced vertices at the LHC

Glueball production
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Distribution of displaced vertices at the LHC

Fragmentation Function



Distribution of displaced vertices at the LHC

Fragmentation Function

Normalization



Distribution of displaced vertices at the LHC

Fragmentation Function

Normalization

Average multiplicity
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Distribution of displaced vertices at the LHC

Fragmentation Function

Normalization

Average multiplicity

DGLAP evolution
dDf(z, )  a(u) /'1 dw Db (z
0

dlog i 27
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Distribution of displaced vertices at the LHC

Gluon Splitting Function

Pge(z) = aP® + 2Pt + a3P? 4 ...

11—~z z

11
Py, (z) =6 ( +2(1-2)+ 56(1 - z)) .

z [1—2z]+
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Distribution of displaced vertices at the LHC

Gluon Splitting Function

Pge(z) = aP® + 2Pt + a3P? 4 ...

11—~z z

ng(z):6( e —l—z(l—z)—&—i;&(l—z)).

It does not work for small z values asLog?(1/z) ~ 1

29 /37



Distribution of displaced vertices at the LHC

Low z approximation

1 2
D(z) < —exp [_M(f &p) }
£ =1In(1/z)
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S = 4bar
2 1 27
T 2ab CAai_
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Distribution of displaced vertices at the LHC

Low z approximation
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Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

31/37



Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

Strategy 1
@ Start at an energy scale up.
@ Match low and high z behavior at some value zy
@ Choose avalueof 8. Eg. =1

@ Impose normalization (energy conservation). This fixes
D(z, po) (and < n> (po) )
@ Evolve to other energies using DGLAP

31/37



Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

D(z) = N(1 — z)?
Strategy 2



Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

D(z) = N(1 — z)?
Strategy 2
@ Matching low and high z behaviour



Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

D(z) = N(1 — z)?
Strategy 2
@ Matching low and high z behaviour

@ Fragmentation Function is mostly dominated by low z
behaviour



Distribution of displaced vertices at the LHC

Modeling the Fragmentation Function

D(z) = N(1 — z)?
Strategy 2
@ Matching low and high z behaviour

@ Fragmentation Function is mostly dominated by low z
behaviour

D) x Tow |- a6~ &




Distribution of displaced vertices at the LHC

n

ms,, [GeV] 900 700 500 300
(zm = 0.1, Mg =15 GeV, A =7 TeV)
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Distribution of displaced vertices at the LHC

Glueball Lifetime

0" glueballs decay back to SM through HDOs
(N. Craig, A. Katz, M. Strassler, R. Sundrum 1501.05310)

O ~ H'HG,,G",
Decay width (D. Curtin, C. Verhaaren 1506.06141)

1 c* v3

14474 ng (m? — /\/Ié)2

MG — SM) ~ (4mapFe)?T(h — SM)(MZ)
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Distribution of displaced vertices at the LHC

Glueball Lifetime

0" glueballs decay back to SM through HDOs
(N. Craig, A. Katz, M. Strassler, R. Sundrum 1501.05310)

O ~ H'HG,,G",
Decay width (D. Curtin, C. Verhaaren 1506.06141)

1 c* v3

14474 ng (m? — Mé)2

MG — SM) ~ (4mapFe)?T(h — SM)(MZ)

Glueball decay constant (from lattice)
drapFg ~ 2.3/\//%
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Distribution of displaced vertices at the LHC

Glueball Lifetime

0" glueballs decay back to SM through HDOs
(N. Craig, A. Katz, M. Strassler, R. Sundrum 1501.05310)

O ~ H'HG,,G",
Decay width (D. Curtin, C. Verhaaren 1506.06141)

y 4 3
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Glueball decay constant (from lattice)

drapFg ~ 2.3/\//%
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Distribution of displaced vertices at the LHC

Distribution of Displaced Vertices

L
Npy = /dzD(z,s)(l —e L) (0.1)
Lg = 2
6= e — (0.2)
~ ng 0 3
CTGg ~ I\/IZ ( )
G

35 /37



ATLAS detector layers
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Distribution of displaced vertices at the LHC

Conclusions

Neutral Natural models as a solution to the little hierarchy
problem

Folded SUSY
Production of F-squarks at the LHC
F-Glueballs

Displaced vertices distribution

e 6 o6 o
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